Semester-Thesis

Feature-based Extrinsic Calibration of Camera and 3D Laser Range Finder

Spring Term 2010

Supervised by:
Jérôme Maye
Ralf Kaestner

Author:
Stefan Dahinden
Contents

Abstract iii

Preface v

1 Introduction 1

2 Related Work 3
 2.1 Extrinsic Calibration 3
 2.1.1 Point Cloud Registration 3
 2.2 Feature Extraction 4
 2.2.1 Features from Camera 4
 2.2.2 Features from 3D Laser Range Finder 4

3 Specifications 7
 3.1 Camera 7
 3.2 3D Laser Range Finder 7
 3.3 Data Acquisition 8
 3.3.1 Scene 8

4 Approach 9
 4.1 Possible Features 9
 4.2 Registration Algorithm 10
 4.3 Method for Extrinsic Parameter Estimation 11

5 Implementation 13
 5.1 Framework 13
 5.2 Interface 13
 5.3 Feature Extraction 14
 5.3.1 Canny Edge Detector 14
 5.3.2 Harris Corner Detector 15
 5.3.3 SURF Detector 16
 5.3.4 3D SURF Implementation 17
 5.3.5 3D Hough Transform 17
 5.3.6 Depth Image 18
 5.4 Image Registration 19
 5.5 Extrinsic Parameter Estimation 21

6 Results 23
 6.1 Features 23
 6.2 ICP 24
 6.3 Extrinsic Parameter Estimation 24
7 Discussion
7.1 Feature Combinations ... 27
7.2 Registration Algorithm ... 27
7.3 Approximation of Extrinsic Parameters 28

8 Future Work
8.1 Improvements to Feature Extraction 29
8.1.1 Bearing Angle Images ... 29
8.1.2 Automatic Thresholding 30
8.2 Registration Process ... 30
8.2.1 Outlier Rejection ... 30

9 Conclusion

Bibliography
Abstract

This thesis documents the implementation and evaluation of an automated method for the estimation of the extrinsic calibration between a 3D laser range finder and a camera. In contrast to common calibration systems, this method is based on features. No calibration pattern has to be introduced.

In a first step, several feature extraction methods are implemented. The features are then evaluated for a later registration method. The selected features are used to register the two data sets. ICP is applied for this process. The registrated features are then plugged into a least squares method to estimate the extrinsic calibration parameters.

It is shown in this thesis that it is possible to create a feature-based method for extrinsic calibration. The features that were selected due to a promising visual match are the Canny edge detector for the camera data and the Harris corner detector for the depth image coming from the 3D laser range finder.
Preface

During the last fourteen weeks I implemented and evaluated an interface allowing to estimate the extrinsic calibration parameters between a camera and a 3D laser range finder. The extrinsic calibration of a sensor setup is a very basic problem that often appears in modern robotics. It is common to solve it by manually selecting some corresponding features or with the help of a calibration pattern. Therefore the idea of creating a feature-based fully automated method fascinated me.

I enjoyed working at the Institute for Robotics and Intelligent Systems in the Autonomous Systems Lab (ASL) which is led by Prof. Roland Siegwart. It was interesting to get an insight in the current research topics of the lab.

I thank my tutors, Jérôme Maye and Ralf Kaestner for their valuable help, rich feedback and for spending many hours advising me in our weekly meetings. I thank my supervisor Prof. Roland Siegwart who made this thesis possible and supported me by granting me a workplace. I also would like to thank Mario Deuss who helped me with a fast implementation of the depth image.

Zurich, July 25, 2010

Stefan Dahinden
Chapter 1

Introduction

In most robotic systems there is a multi modal sensor setup present to perceive the environment. The data from a set of different sensor types is merged into a believe state about the position of the robot, the structure and characteristics of the environment or the dynamics of the surrounding objects. There is also the possibility to reconstruct certain regions of the surrounding three dimensionally for a later manual inspection.

To be able to merge the data of various types of sensors, different approaches are used. Stochastic approaches can create a probability distribution of the believe state of the current position of the robot. There are also several techniques that are based on machine learning algorithms to find certain objects in the sensor data. Bio-inspired algorithms suggest actions to accomplish predefined longterm tasks. And analytical methods may help to find fast solutions and first guesses that can then be refined by other algorithms.

![Figure 1.1: A possible scene in modern robotics.](image)

All these methods rely on a good calibration of the multi modal sensor setup. In most of the cases, the intrinsic calibration of each sensor is known or can be calculated easily. On the other hand it is not so easy to measure an exact extrinsic calibration. As most of the sensor types used in todays robots are measuring in a radial manner, especially the orientation of a sensor is extremely important. Even a small angular deviation can lead to large errors in the interpretation of the sensor data. Therefore a data based extrinsic calibration method is vital.

There are several approaches of data based extrinsic calibration known to the au-
Artificially altering the environment: This can either be done by the introduction of a calibration pattern as shown in Figure 1.2 or by specific illumination of the environment (light grids or dots).

Manual selection of corresponding points: The user has to manually select points in the different sensor data spaces. These point pairs should coincide spatially.

The idea of this thesis is to do a feature-based approach of selecting spatially coincident point pairs. This will erase the necessity of either artificially altering the environment or manually selecting point pairs.
Chapter 2

Related Work

2.1 Extrinsic Calibration

Different calibration techniques have been proposed over the last years [31, 28, 27, 13, 7]. Most of the techniques have the goal to texture 3D models with camera images of the same scene [20, 7]. These scenes can then be used for localization estimation, map building, visual inspection or even digital archiving of historic objects or buildings.

There exist several Matlab Toolboxes for an efficient and robust calibration of camera and 3D laser range finder [28, 31]. Some of them need interaction with the user by locating corresponding feature pairs [28]. Often a checkerboard is used as a calibration pattern which can be automatically detected [32, 27, 31]. Another technique of introducing a artificial calibration pattern is the use of light grids [33, 18]. All these approaches are based on selecting spatially corresponding points of the datasets of both camera and 3D laser range finder. From this point correspondences the extrinsic parameters can then be estimated by minimizing the distance between the point pairs.

2.1.1 Point Cloud Registration

As this thesis points towards a feature-based approach which replaces the manual selection by a user, a registration algorithm is needed to find correspondences between the feature sets.

Many registration methods have been developed for pose estimation [4, 34]. Some of them work with features and feature descriptors. Furthermore the computational complexity is rather high. Either a large feature descriptor is used which has to be compared over the features or decompositions are calculated on large matrices. Additionally all of these feature-based approaches assume data from the same type of sensor. The most common sensor type in these cases is the camera. Our thesis works with two different types of sensors - camera and 3D laser range finder. Therefore, these approaches are not well suited for the problem of this thesis.

The most popular registration algorithm suitable for point clouds is the iterated closest point method (ICP). It is a very simple approach introduced by several researchers at nearly the same time [33, 3, 8, 6]. The principle idea is to start at an initial guess of the position and orientation. By iteratively adapting the transformation to minimize the distance between the current neighbors, ICP converges to the optimum if the initial guess was good enough. Several improvements have been proposed to the basic ICP. A fast implementation using search index trees was developed [29]. To further improve the stability of the algorithm, the distance function was extended by taking surface normals into account [11].
2.2 Feature Extraction

A feature-based registration method needs robust features in both datasets. In the following subsections all feature detectors are presented that were used and evaluated in this thesis.

2.2.1 Features from Camera

Many feature extraction methods exist for camera images [26]. In 1986 Canny proposed a gradient based edge detector [5]. He takes the gradient magnitude and performs a non maximum suppression in direction of the gradient. This results in very robust edge features. Canny also derived a computational theory of edge detection to explain his method. Although the Canny operator was proposed very early it is still used very often due to his simple approach and robust features.

Two years later, Harris introduced a combined edge and corner detector which is based on directional derivatives [15]. A matrix is built up for every pixel using a sum of directional derivatives in a sliding window. With the eigenvalue of this matrix one can decide whether the pixel is a corner, an edge or a flat region.

Besides edges and corners, blob like structures can also be detected robustly in camera images. Basically two simple approaches exist that can detect blobs. Both rely on filters that are convolved with the image and result in large absolute values in a blob and low values otherwise.

- **Laplacian of Gaussian (LoG):** By taking the Laplacian of the convolution of the image with a Gaussian kernel, blobs show a strong answer. To render this approach scale invariant, several convolutions with differently scaled Gaussian kernels are applied. Local extrema in both scale and spacial space are then extracted. There is also the possibility to approximate the Laplacian of Gaussian by a difference of Gaussian convolutions (DoG) with the image.

- **Determinant of the Hessian (DoH):** Another approach is to compute the Hessian matrix and then take the scale-normalized determinant to detect blobs [21, 22]. The SIFT feature descriptor exploits this method to detect its features [23, 24]. Approximating the Hessian determinant with Haar wavelets results in the basic interest point operator of the SURF descriptor [2].

2.2.2 Features from 3D Laser Range Finder

While many stable feature detectors exist for camera images, few have been introduced for point clouds of 3D laser range finder. One reason for this is the higher dimensionality and therefore higher computational complexity of the methods. This leads to a lower usability in practical applications. Another reason could be that 3D laser range finder are much slower in the gathering of a dataset.

The probably simplest approach is to perform a Hough transform which can be used whenever the data is a point cloud. The Hough transform projects every point of the point cloud into a parameter space [16, 1]. The parameters model a certain shape. Often planes or lines are used. The best responses in the Hough space can then be transformed back to the spacial space where they represent a shape with defined parameters. Several improvements have been proposed such as a probabilistic approach [19], a refinement of the line parametrization by using normal parameters [10] or an adaptive variation which is an efficient way of implementing the Hough transform [17]. The biggest argument for the Hough transform is its universality. Although computational complexity can become a problem, the Hough transform works on a huge range of data structures and can detect every shape that is parameterizable with a small amount of parameters.
Another feature extractor for 3D point clouds is the ThrIFT operator [14]. ThrIFT is a 3D adaptation of the SIFT descriptor. According to the author, the features are robust but unfortunately not very distinctive.

Methods for estimating surface normals in 3D point clouds have also been proposed [25]. With the help of the surface normals, the points can then be connected to a mesh. The mesh can provide information about edges and corners in the point cloud.

Higher dimension and the nature of the point cloud result in higher computational complexity. Therefore in many cases a reduction of the dimensionality is applied. Often this is done by working with a depth image [28]. Especially for data from a 3D laser range finder which consists of already sorted data points. Operating on depth images has the huge advantage that any feature detector applicable on 2D images can be used.
Chapter 3
Specifications

In this chapter, technical details about the sensors and the measured scenes are presented. The sensor setup consists of a 3D laser range finder and a camera (see Figure 3.1).

3.1 Camera

The camera used in the setup was a XCD SX910CR from Sony. It has a fixed focal length of 4.3mm and takes pictures at a resolution of 1280x960 pixels. No flash was used and the pictures were not post processed.

3.2 3D Laser Range Finder

A Sick LMS 200 laser range finder was used to gather the 3D data. It is mounted on a servo motor so it can be tilted from -45° to 45° at an angular resolution of
1°. At every angular step around the pitch axis a scan around the current yaw axis from -90° to 90° is performed with 1° steps at 75 Hz. The laser range finder can measure distances up to ca. 80m at an accuracy of 35mm. It is directly connected to a laptop and produces a single log file containing all measurements each with a time step attached.

3.3 Data Acquisition

The data was taken simultaneously to prevent changes in illumination or the placement of any objects in the scene. The sensor setup can be seen in Figure 3.1.

3.3.1 Scene

To gather the data, indoor scenes were chosen as well as an outdoor scene. A picture of an indoor scene can be seen in Figure 3.2. The scene was illuminated by the already installed lamps. Also the measurements were performed during daytime and the windows were not covered. No additional light was introduced. The scene was not artificially changed with a calibration pattern.
Chapter 4

Approach

The goal of this thesis is to assess the realization of a completely automated method for extrinsic parameter estimation between a camera and a 3D laser range finder. The method should rely on features extracted from measurements taken simultaneously from both sensors in an indoor scene.

To achieve this task all of the following steps have to be implemented:

- **Preprocessing**: The data sets from both sensors are preprocessed in a first step to prepare them for an efficient and robust feature extraction.

- **Feature extraction**: Features are then extracted from both datasets. It is important to note that these features should be chosen in a way that they can be registered in a later step. However, this does not mean that the same feature extraction method has to be chosen for both data sets.

- **Feature registration**: The extracted features are then registered to find spatially matching features. For this task, not only the spatial information of the features are available but also feature descriptors that can be directly created from the data sets. This step therefore tries to solve the correspondence problem. As a result, we get matching feature pairs over the two datasets.

- **Estimation of extrinsic parameters**: By using the matched feature pairs the extrinsic calibration of camera and 3D laser range finder can then be estimated in a last step. There are three rotational and three translational degrees of freedom. Therefore this is a six degrees of freedom problem that has to minimize a predefined error function based on the distance between the matched features.

4.1 Possible Features

As already discussed in Chapter 2 the variety of feature detectors available for camera images is large. It is a priori not clear what features to use. Therefore a selection of promising feature detectors was formed. The same was done for possible methods for data coming from a 3D laser range finder.

In the following all features evaluated in this thesis are listed.

- **Camera Features**
 - Canny edge detector
 - Harris corner detector
 - SURF
• Features for 3D point clouds
 – Hough transform
 – 3D SURF
 – Features from depth image
 * Canny edge detector
 * Harris corner detector
 * SURF

The features were chosen for different reasons. Firstly, the features have to be stable in the scenes we used. Secondly, since features that are often used in related work have been refined and adapted into different variations, they are more promising to this thesis. This can be explained by the flexibility of the respective approaches. They have proven to be stable and distinctive in various situations and were compared against other feature detectors several times. Thirdly, the features were chosen in a way that the detected interest points cover a wide range of different objects.

For the camera three feature extractors were chosen. The Canny edge detector is based on both the gradient magnitude as well as the gradient orientation of the image [5]. The Harris corner detector is based on directional derivatives and works with a matrix constructed of weighted sums of these derivatives in a sliding window [15]. The newest feature detector in the list is the SURF detector introduced by Bay in 2006 [2]. It is capable of detecting blob like structures in the image. By looking at the determinant of an estimation of the Hessian matrix it is able to find blobs at any scale in the image. Through the exploitation of integral image these estimations can be calculated in constant time at any scale using box filters.

For the 3D point cloud there are two possibilities to extract features. Either by working with the raw point cloud and therefore extracting 3D features. Or by computing the depth image from the point cloud and applying common 2D feature extraction methods. For the 3D case two feature extraction methods were used. The Hough transform was used to extract arbitrary planes through the point cloud that are supported by many points in the cloud [1]. From these planes, 3D edges and corners can then be calculated. A 3D implementation of the SURF detector was developed to extract blob like 3D structures like a teapot on a table or a lamp hanging from the ceiling.

From the depth map the same features were chosen as for the camera image. The reasons are the same as for the features for the camera image. Additionally, the use of the same features might help the registration process.

The different feature extraction methods were then compared to each other in order to find combinations of features from camera image and 3D point cloud that are well suited for each other. This assessment was done with regard to a later registration process.

4.2 Registration Algorithm

After the features are extracted they must be registrated. This means that spatially corresponding features from both feature sets have to be matched with each other. Several approaches have been proposed (see Chapter 2).

For this thesis a basic approach had to be chosen. This ensures the possibility of introducing additional information as help for the registration. As a registration algorithm for point clouds in both 2D and 3D, ICP has proven very powerful in many ways.
Firstly, it is a very straightforward iterative process. In every iteration points from both data sets are assigned to each other with a nearest neighborhood criteria. Then a new transformation is approximated that minimizes the distance between the assigned points. The new transformation is then applied to the original dataset. This process is iterated until convergence.

Secondly, the introduction of a feature descriptor fits nicely into the definition of the algorithm. By adding weights to each assigned point pair based on the distance of their descriptors, the minimization process takes the gradient orientation into account. However it is not possible to introduce a intensity based feature descriptor because of the two sensor types. Although the images contain some similar information, the way of representing this information is different. Therefore a intensity based comparator like correlation in a sliding window is not feasible.

For all its advantages ICP has also a drawback. An initial transformation guess is needed to start the iteration process. Therefore it is unavoidable to state some assumptions when using ICP. With the help of the intrinsic calibration it is of course possible to match both datasets together when the extrinsic calibration is the identity. If the changes to location and orientation are small, the intrinsic calibration is a good initial guess of the transformation. Therefore the assumption is introduced that the changes in location and orientation are small. Then the intrinsic calibration of the camera can be used as an initial guess.

4.3 Method for Extrinsic Parameter Estimation

After the registration process a set of matched features is available that are spatially close to each other. From these point pairs the extrinsic parameters have to be estimated in a last step. This is a basic least squares problem with six degrees of freedom. It can be solved using many methods. The chosen approach creates a matrix A containing the system of equations that states the initial problem. By minimizing the norm of the product $||A \cdot x||$, x is retrieved. From x, the extrinsic calibration matrix can easily be obtained. The exact methodology can be found in Chapter 5.
Chapter 5

Implementation

In this chapter the implementation of the extrinsic calibration process is explained and encountered challenges are illustrated.

5.1 Framework

Since this thesis does not build upon a specific previous work the choice of the language and environment was completely free. Matlab [30] was chosen due to several reasons. Firstly, it is data oriented and has therefore a very natural and clear way of working with data. Secondly, it is very easy to create output, both visual and text. An image or graph can be plotted in one single command. Thirdly, as long as it is used proper, the language is reasonably fast. Fourthly, Matlab has a rich selection of official functions that are organized in toolboxes. The functions are well documented and the support answers fast and appropriate. Last but not least, Matlab is a platform independent environment which encouraged a large community of users to create additional content by offering various functions that complement the toolboxes.

5.2 Interface

As there is little interaction with the user the interface is kept simple. A screen shot can be seen in Figure 5.1. There is written output in the command stream to show which step is currently performed and how long the previous steps took. There are also several figures. One of them can be seen in the screen shot showing the currently matched features during the ICP iterations. There are other figures showing all the extracted features, the final calibration as two coordinate frames translated and rotated properly to each other. At termination of the script the rotational part of the extrinsic calibration is stored in the three dimensional rotation matrix R, the translational part in the vector C and the intrinsic calibration matrix in K. This leads to

$$p_{cam} = K \cdot (R \cdot p_{lrf} + C)$$

where p_{cam} is a point in the camera image and p_{lrf} is a point in the point cloud of the laser range finder. A pinhole model was chosen as approximation for the camera used in this thesis.
5.3 Feature Extraction

Several feature detection methods had to be implemented during this thesis. An exact description of the functionality and mathematical implementation of each of them is given below.

5.3.1 Canny Edge Detector

As described in Chapter 2 the Canny edge detector is a gradient based edge detector proposed by John Canny in 1986 [5]. The detector is divided into four stages.

Noise Reduction In the first stage present noise is suppressed. This prevents noisy features due to the fact that the Canny edge detector is rather sensitive to pixel noise present on most unprocessed images. The noise reduction is done by convolving the original image with a Gaussian filter. Gaussian filters blur the image to a certain extent, depending on the filter size and the σ that was chosen for the filter.
5.3. Feature Extraction

Computation of Gradient As the gradient of a pixel is high if an edge is present, the gradient magnitude and gradient orientation is calculated in a second step. The first derivative in both horizontal and vertical direction G_x and G_y are approximated using certain filters (Prewitt and Sobel are examples that can approximate the derivatives). The gradient magnitude and gradient orientation

$$G = \sqrt{G_x^2 + G_y^2}$$

$$\Theta = \arctan \left(\frac{G_y}{G_x} \right)$$

can then be calculated. The gradient orientation is then rounded to one of the four angles 0° (vertical, N), 45° (diagonal, NE), 90° (horizontal, E) and 135° (other diagonal, SE).

Non-maximum Suppression After computing the gradient magnitude, a non-maximum suppression is performed on the gradient magnitude in direction of the gradient orientation. For example, if a pixel has a gradient orientation of 0°, the pixel is set to zero if the neighboring pixels in either north or south direction has a larger gradient magnitude. The pixel is set to one otherwise. This results in a binary image where edge candidates have the value one.

Edge Tracing by hysteresis thresholding In a last step noisy edges are suppressed. This is done by two thresholds. Every pixel with a gradient magnitude greater than the higher threshold is classified as belonging to an edge for sure. From every edge point found with the high threshold, the edge can be traced in both directions using the directional information derived earlier. Applying the lower threshold allows to trace edges even through unclear regions as long as the gradient magnitude stays above the threshold. This process results in another binary image with clean edges that are connecting strong edge supporters. An example of the output is shown in Figure 5.2.

5.3.2 Harris Corner Detector

The Harris detector is a combined edge and corner detector. The first step is to compute the horizontal and vertical first order derivatives of every pixel. From the derivatives I_x and I_y the Harris matrix

$$A = \sum_u \sum_v w(u,v) \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix}$$

is calculated. $w(u,v)$ is a circular window function to ensure an isotropic response. To extract corners and edges, the eigenvalues of A have to be computed. If both eigenvalues have large positive values, the corresponding point is classified as a corner. If only one eigenvalue has a large positive value and the other one is small, the corresponding point is classified as an edge. In the case that both eigenvalues are small, no feature is extracted at that position.

If only corners are wanted it is not necessary to compute the eigenvalues which is computationally expensive. Instead the matrix can be condensed to a single scalar

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 = \det(A) - \kappa (\text{trace}(A))^2$$

where κ is a sensitivity parameter. A point is now classified as a corner if $R \gg 0$. An example output is shown in Figure 5.3.
5.3.3 SURF Detector

The SURF detector (Speeded up robust features) is a scale invariant blob detector which is based on the SIFT detector and therefore on the determinant of the Hessian matrix.

In a first step the Hessian Matrix

\[\mathcal{H}(x, \sigma) = \begin{pmatrix} L_{xx}(x, \sigma) & L_{xy}(x, \sigma) \\ L_{xy}(x, \sigma) & L_{yy}(x, \sigma) \end{pmatrix} \]

is approximated. \(L_{xx}(x, \sigma) \) is the convolution of the Gaussian second order derivative with the image in the point \(x \). \(L_{xy}(x, \sigma) \) and \(L_{yy}(x, \sigma) \) are defined similarly. As a convolution of an undefined large Gaussian filter with the original image can get computationally very expensive, these convolutions are approximated with box filters shown on the right side of Figure 5.5 (the pictures was taken from the original paper [2]).

Box filters can be convolved very fast with the help of an integral image which has to be computed just once. This reduces the computational complexity of one Hessian approximation to \(O(1) \) for every scale. The approximations are denoted as \(D_{xx} = L_{xx} \) and \(D_{xy} \) and \(D_{yy} \) respectively.

The determinant of the Hessian matrix can now be calculated as

\[\det \mathcal{H}_{\text{approx}} = D_{xx}D_{yy} - (0.9D_{xy})^2, \]

where a factor of 0.9 is added to the off diagonal elements of the matrix to compensate for the approximation error of the box filters.
5.3. Feature Extraction

This process is now performed for every pixel in various scales. A non-maximum suppression is finally performed for a 3x3 neighborhood to clean up the corner responses. An example of the resulting features is shown in Figure 5.4 [2]. Note that the scale of the features is a part of the feature itself.

5.3.4 3D SURF Implementation

The SURF detector described in the previous subsection was also adapted so it can process data coming from a 3D laser range finder. This adaptation is partly based on the ThrIFT detector proposed by Alex Flint in 2007 [14]. A 3D density map is constructed from the point cloud. This density map serves as a 3D equivalent of the 2D image in the original SURF method. The Hessian matrix can again be approximated by box filters with the help of an integral image. The structure of these three dimensional box filters is shown in Figure 5.6.

![Figure 5.6: 3D box filters approximating second order Gaussian derivatives.](image)

For the estimation of the determinant of the Hessian matrix

$$\det \mathcal{H}_{\text{approx}} = \det \begin{pmatrix} D_{xx} & \gamma D_{xy} & \gamma D_{xz} \\ \gamma D_{xy} & D_{yy} & \gamma D_{yz} \\ \gamma D_{xz} & \gamma D_{yz} & D_{zz} \end{pmatrix},$$

$$\gamma$$ is used again as scaling factor to compensate for the approximation of the box filters.

After a 3x3x3x3 (three spatial dimensions and one scale dimension) non-maximum suppression is performed on the 4D response matrix, the features can be extracted directly with their according scale.

5.3.5 3D Hough Transform

The second approach to extract 3D features from the data of the 3D laser range finder consists of performing a Hough transform for 3D planes. The planes can then be intersected to extract edges and corners.
A normal parametrization was chosen for the 3D planes. Therefore the Hough space is composed of three dimensions: The distance along the normal to the plane going through the origin (ρ), the pitch angle of the normal (ϕ) and the yaw angle of the normal (θ). Every point of the cloud is then transformed into Hough space which results in a sinusoidal surface for every point. A non-maximum suppression is then performed in the three dimensional Hough space. The planes can then be extracted and transformed back into spacial space. The results of the Hough transform on one of the scenes can be seen in Figure 5.7. The points are assigned to extracted planes designated by different colors.

The features can be improved by just extracting the largest response in the Hough space. The points that support the extracted plane are then removed from the point cloud and the process is iteratively repeated.

5.3.6 Depth Image

As already stated in Chapter 4, there is also the possibility to calculate a depth image from the 3D point cloud. On this depth image 2D feature extraction methods such as the Canny edge detector or the Harris corner detector can be applied. A depth image calculated from one of the indoor scenes is shown in Figure 5.8.

Two variations were implemented to extract a depth image from a point cloud coming from a 3D laser range finder. The first approach uses a pinhole camera
model to create rays going through the origin of the sensor and one of the pixels of the image projected into the spatial space. For each of the rays, the closest point of the point cloud is chosen. The distance between the chosen point and the origin is then assigned to the corresponding pixel. It is also possible to take the average distance of the closest k points from the data. This method has the advantage that the intrinsic calibration matrix from the camera can be used for the rendering. This results in an image very similar to the camera image. However, this implementation has a large drawback which is the expensive computation. For every pixel of the resulting image, the distance of the corresponding ray to every point in the point cloud has to be computed and the nearest k points have to be found.

Therefore another approach was implemented which exploits the intrinsic nature of point clouds from 3D laser range finders: They are already sorted in a spherical space. Therefore a very basic depth image already exists by just putting all distance measurements in a matrix with the intrinsic order the log file provides. This matrix can be seen as an image. The image is then in a first step projected onto the unit sphere. The same is done with the projection of the resulting picture. As the spherical coordinates of both the raw depth image as well as the resulting image are known now, the values of the resulting image can simply be looked up. In this case, a bilinear averaging method was chosen to prevent aliasing which comes from the transformation itself. The aliasing coming from the measurements is not removable in that way.

The resulting depth image can now be exposed to common 2D feature extraction methods.

5.4 Image Registration

When the resulting features from both data sets are extracted successfully, they have to be registrated in order to estimate the extrinsic parameters. The registration of the two images allows for solving the correspondence problem in a purely spatial approach. A modified ICP was chosen in this work as the registration algorithm as has already been explained in Chapter 4.

In order to converge, ICP needs a good initial guess of the transformation to be refined. As we used 2D features for both sensors (see Chapter 6 for further information), a 2D-2D ICP is sufficient which is basically an image transformation problem. The algorithm has to find a homography that transforms the homogeneous depth image coordinates into homogeneous camera image coordinates. To realize a projective transformation (which can be achieved by a homography), homogeneous coordinates are needed and therefore the transformation matrix is a 3x3 Matrix. An example of a homography can be found in Figure 5.9. A good initial transform-

![Figure 5.9: Left: Depth image, Middle: A homography of the depth image, Right: camera image.](image)

...
depth image. After the initialization, ICP consists of two steps that are iteratively repeated until convergence.

1. Initialize homography by taking a first guess of the transformation.
2. Associate points from both images with each other.
3. Minimizing the sum of squared distances of the associated points.

The first step is to associate points by nearest neighbor in the current transformation. The associated point pairs are then weighted based on the gradient orientation of the two features. The weight w_i of the i-th point pair is defined through the gradient orientations θ_1 and θ_2 of the two images.

$$w_i = \left(4 \left(\frac{|\theta_1 - \theta_2| - \pi}{\pi} \right)^2 + 0.01 \right)^{1/0.01}$$

The weighting function is shown in Figure 5.10. The x and y axis show the gradient orientation θ_1 and θ_2 of the images. The orientations of the two gradients can also be seen on the blue and red arrows that plotted over the weighting function. The z axis shows the weighting assigned for the respective combination of gradient orientations.

The second step of the ICP iteration is to estimate the new transformation by minimizing a given error function. The transformation is a homography in this case and the error function to be minimized is

$$e = \sum_i (w_i \cdot d_i)^2$$

which is the sum of the weighted squared distances d_i of all point pairs from step one. This least squares problem is solved by building up the system matrix

$$A = \begin{pmatrix}
w_1 x_1 & w_1 y_1 & w_1 & 0 & 0 & 0 & -w_1 x_1 X_1 & -w_1 y_1 X_1 & -w_1 X_1 \\
0 & 0 & 0 & w_1 x_1 & w_1 y_1 & w_1 & -w_1 x_1 Y_1 & -w_1 y_1 Y_1 & -w_1 Y_1 \\
w_2 x_2 & w_2 y_2 & w_2 & 0 & 0 & 0 & -w_2 x_2 X_2 & -w_2 y_2 X_2 & -w_2 X_2 \\
0 & 0 & 0 & w_2 x_2 & w_2 y_2 & w_2 & -w_2 x_2 Y_2 & -w_2 y_2 Y_2 & -w_2 Y_2 \\
\vdots & \vdots
\end{pmatrix},$$

where \vec{x} is the homogeneous coordinate vector of the the camera image and \vec{X} is the homogeneous coordinate vector of the depth image. This matrix follows from
the equation

\[
\begin{pmatrix} h_1 x_1 + h_2 y_1 + h_3 \\ h_4 x_1 + h_5 y_1 + h_6 \\ h_7 x_1 + h_8 y_1 + h_9 \end{pmatrix} = \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = \begin{pmatrix} h_1 x_1 + h_2 y_1 + h_3 \\ h_4 x_1 + h_5 y_1 + h_6 \\ h_7 x_1 + h_8 y_1 + h_9 \end{pmatrix},
\]

where \(\vec{X}' \) is not yet a valid homogeneous coordinate vector because the last coordinate value has to be 1. Therefore, the vector has to be adjusted.

\[
\vec{X} = \frac{1}{h_7 x_1 + h_8 y_1 + h_9} \vec{X}'
\]

Therefore we get two equations and one tautology for every point pair

\[
X_1 = \frac{h_1 x_1 + h_2 y_1 + h_3}{h_7 x_1 + h_8 y_1 + h_9}, \quad Y_1 = \frac{h_4 x_1 + h_5 y_1 + h_6}{h_7 x_1 + h_8 y_1 + h_9}, \quad 1 = 1
\]

which can be rewritten as

\[
h_1 x_1 + h_2 y_1 + h_3 \cdot 1 + h_4 \cdot 0 + h_5 \cdot 0 + h_6 \cdot 0 - h_7 x_1 X_1 - h_8 y_1 X_1 - h_9 \cdot 1 = 0
\]

\[
h_1 \cdot 0 + h_2 \cdot 0 + h_3 \cdot 0 h_4 x_1 + h_5 y_1 + h_6 \cdot 1 - h_7 x_1 X_1 - h_8 y_1 X_1 - h_9 \cdot 1 = 0.
\]

This leads to the above system matrix \(A \).

Now a vector \(h = (h_1, \ldots, h_9)^T \) must be found that minimizes \(A \cdot h \). Now the singular value decomposition \(A = U \cdot S \cdot V \) is taken with \(S \) containing the sorted singular values in the diagonal elements. See [9] for further explanation on this method. The column of \(V \) which belongs to the smallest singular value then is the minimizing \(h \). The homography

\[
H = \begin{pmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{pmatrix}
\]

is then reconstructed from \(h \) and the iteration is repeated until the homography change is very small and therefore is converging.

The final step consists of assigning points by nearest neighbor for a last time. The features from the depth image can then be transformed to Cartesian 3D coordinates to simplify the extrinsic parameter estimation.

5.5 Extrinsic Parameter Estimation

After having created a set of spatially corresponding feature points, they can be used to estimate the extrinsic calibration parameters of the camera with the 3D laser range finder as reference system.
Let \(\{X_i, Y_i, Z_i\} \) be the part of the matched features coming from the 3D laser range finder and \(\{u_i, v_i\} \) the part of the matched features coming from the camera. The chosen approach creates a system matrix

\[
A = \begin{bmatrix}
X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\
0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\
X_2 & Y_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & -u_2X_2 & -u_2Y_2 & -u_2Z_2 & -u_2 \\
0 & 0 & 0 & 0 & X_2 & Y_2 & Z_2 & 1 & -u_2X_2 & -u_2Y_2 & -u_2Z_2 & -u_2 \\
\vdots & \vdots
\end{bmatrix}
\]

containing the system of equations that states the initial problem (see Section 5.4 for further details on how to create this matrix). The norm of the product \(|A \cdot x| \) has now to be minimized. This can be done by taking the eigenvector \(v_{\downarrow} \) of the smallest eigenvalue of \(A^T A \). This is an equivalent formulation of the least squares problem we have to solve. The homogeneous transformation matrix

\[
P = \begin{bmatrix}
v_{11} & v_{12} & v_{13} & v_{14} \\
v_{15} & v_{16} & v_{17} & v_{18} \\
v_{19} & v_{110} & v_{111} & v_{112}
\end{bmatrix}
\]

can then be reconstructed in the same way it was done in Section 5.4.

By taking the product of the inverse of the intrinsic calibration matrix \(K \) with \(P_r \) where \(P_r \) is the quadratic (and therefore rotational) part of \(P \)

\[
P = (P_r|C),
\]

the extrinsic calibration matrix \(R \) can then be retrieved (see Section 5.2 for a detailed definition of \(K, R \) and \(C \)).

\[
R = K^{-1}P_r
\]

A plot of the simulation results of the least squares approximation is shown in Figure 5.11. A pinhole camera is used as model for the camera.
Chapter 6

Results

In this chapter the results of this thesis are presented. One of the main tasks of the thesis was to assess different feature combinations for the usability in a registration process. Another task was the evaluation of ICP as a registration algorithm with the given feature sets. And finally some results are presented regarding the final extrinsic calibration estimation.

6.1 Features

A selection of features were evaluated regarding their usefulness for a registration process with ICP. The implementation and an exact explanation of their functionality has been given in Chapter 5.

All three feature detector selected for the camera image have shown to create robust and distinctive feature sets. This was expected due to numerous previous work in that area. Both Canny edge and Harris corner detector have a long history of scientific use and have proven to create very stable features. Although the SURF
detector is fairly new it can present many papers confirming the claims of the author to create robust, fast and distinctive features. This thesis has confirmed this too. Whereas the feature detectors worked well on the camera images, the ones chosen for the 3D feature extraction were not so successful. The Hough transform approach succeeded in extracting large planes that were supported by many points in the point cloud. But it failed to extract planes with a low amount of supporters. Therefore it was not possible to extract a sufficient amount of features from the planes. Therefore this approach has been abandoned.

The 3D SURF implementation did not succeed in extracting distinctive features. Due to the dimensionality of the feature space, the algorithm also had a large computational cost. Because of these reasons this approach was abandoned too. The extractors for the depth image however resulted in mostly stable and distinctive feature sets. The results of the comparison is shown in a compatibility table that can be seen in Figure 6.1. Note that the combination of Canny edges from the camera image and Harris corners from the point cloud were chosen as best combination. Further discussion on the advantages and disadvantages of different combinations can be found in Chapter 7.

6.2 ICP

Figure 6.2: Error of the extrinsic calibration during the ICP iterations.

In Figure 6.2 the error of the extrinsic calibration estimation is shown during the ICP iterations. The error slowly converges to a lower value. The initial transformation guess however is crucial to the result. ICP can get stuck in local maximums which can happen as soon as the initial transformation is not good enough. The result of a successful run of the ICP is shown in Figure 6.3. The depth images is overlaid with 50% opacity and the final homography applied. The matched features are shown in red and blue.

6.3 Extrinsic Parameter Estimation

Unfortunately in many cases, ICP converged to unwanted local maximums or even diverged. Therefore an evaluation of the final extrinsic parameter estimation over the whole process does not make sense. However it is important to note that in the cases of a convergence to the wanted registration, the method for the estimation of the extrinsic parameter worked and produced reasonable results.
Figure 6.3: Final corresponding point pairs.
Chapter 7

Discussion

In this chapter a discussion of the results from Chapter 6 is given. Also some ideas to improve the method will be given as a consequence of the results.

7.1 Feature Combinations

One of the tasks of this thesis was to assess different feature combinations for further use in the registration process. A good solution has been found with Canny edges for the camera and Harris corners for the 3D laser range finder. Both feature extractors result in stable results on both data sets. It might be surprising that the combination of different extractors have shown the most promising results. Canny edges on the camera image resulted in very stable and distinctive features. The visual match with Harris corners in the 3D laser range finder data are very promising. Combinations like Harris corners on both data sets does not have enough matching features and a large amount of outliers. This can be explained by the fact that Harris corners are relying on directional derivatives. As there are strong gradients present in the depth image on regions that are flat in the camera image (for instances walls), there are many features that have no matching pendant and therefore are outliers. The same holds for the Canny edges combination on both data sets. Canny edges are gradient based and therefore sensitive to gradients which show up in unwanted areas of the depth image. This results again in a large amount of outliers.

7.2 Registration Algorithm

As already stated in previous chapters, the selection of the ICP algorithm might not be an optimal one. ICP suffers from some drawbacks. The first is that it depends on an initial transformation guess which has to be already a good estimate of the final transformation. Otherwise, the algorithm can get stuck in local maximums or even diverge. Another drawback is that it assumes feature sets that have a very low percentage of outliers. Due to the very different nature of the two sensor types, the outlier rate of the feature sets is much higher than what ICP expects. A good outlier rejection mechanism like RANSAC [12] could help ICP significantly by sorting out outliers. Another approach that might eliminate some outliers would be a preprocessing of the depth image. Bearing angle images [28] could lead to a better overlapping of the feature sets because bearing angle images are more similar to camera images, than raw depth images are.
7.3 Approximation of Extrinsic Parameters

The least squares approximation of the extrinsic parameters worked well if a correctly registrated set of point pairs is given as input. The methods needs minimally 8 matched pairs to create a good estimation. As both Canny edge detector as well as the Harris corner detector produce many features, this restriction should not become a problem.
Chapter 8

Future Work

This thesis produced many insights in the process of feature-based extrinsic calibration. This chapter presents some possible improvements for future work on the project.

8.1 Improvements to Feature Extraction

As a large part of the thesis was to evaluate possible feature extraction methods, there are some ideas how to improve the feature extraction process. This could then lead to better matchable feature sets.

8.1.1 Bearing Angle Images

In his paper on extrinsic calibration, Scaramuzza proposed the use of bearing angle images to help the user visually to manually select corresponding features [28] (see Figure 8.1). Intended for giving the user a more intuitive image than the depth image, this idea might also help to achieve better results in the feature extraction process. Bearing angle images tend to be structurally more similar to camera images than depth images are. Therefore it is possible that also the extracted features are more similar to the ones extracted from the camera image. This could mean better matchable features which would help the registration algorithm in finding the correct homography.

Figure 8.1: Left: Raw depth image, Right: Bearing angle image.
8.1.2 Automatic Thresholding

At the current state, thresholds in the extraction process are chosen heuristically. For a better generalization it would be preferable to implement some automatic thresholding mechanisms to control the number of extracted features. By adapting the threshold during the feature extraction this could even lead to more robust and distinctive features.

8.2 Registration Process

The biggest weakness of the whole method is the registration process i.e. the ICP algorithm. At least the implementation of ICP should be improved by a weighting that relies on a more complex feature descriptor than the gradient orientation. Because Canny edges are used in the camera image, the matching process could be improved by implementing a point to line distance measure instead of a point to point distance.

8.2.1 Outlier Rejection

![Feature Sets Overlap](image)

Figure 8.2: The feature sets overlap only partially.

The rejection of unmatchable features was one of the biggest challenges of the work. As shown in Figure 8.2 the sets of features are just overlapping partially. So the green features are ones that are matchable. The features marked red can not be used in a registration process and can even confuse it.

By introducing a sophisticated outlier rejections mechanism, the weighting of the matched pairs can be further improved. I suggest the implementation of RANSAC. As a powerful matching point estimation method it might be able to perform valuable outlier rejection.
Chapter 9

Conclusion

In this thesis, an automated feature-based extrinsic calibration method for a camera and a 3D laser range finder has been developed and implemented. In a first step, the data is preprocessed to help the following feature extraction. The extracted features are then corresponded to each other with the help of a modified ICP algorithm which introduces weights to the assigned point pairs. Finally, the resulting corresponding point pairs are used to estimate the extrinsic calibration of the camera with respect to the laser range finder.

Several feature extractors were investigated to find a good matching feature combination. Canny edges for the camera data and Harris corners for the 3D laser range finder data showed promising matching properties while at the same time being very stable.

ICP was tested as a registration algorithm for the given sensor setup and the chosen feature detectors. It showed that ICP was not able to robustly match the given feature sets. Several reasons may apply. Firstly, a good initial transformation has to be known in order for the algorithm to work. Secondly, ICP assumes nearly completely matchable feature sets which is not the case in this scenario as the two feature sets are extracted from very different data.

As long as ICP succeeds in matching the features, the calibration method is able to estimate the extrinsic calibration well. Often this is not the case. Therefore several improvements have been proposed in this thesis. A sophisticated outlier rejection might help the ICP. Also the use of bearing angle images is proposed to create feature sets that are more matchable. Unfortunately there was no time to implement and test these improvements.
Bibliography

